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Spontaneous emergence of
modularity in

cellular networks

Ricard V. Solé1,2,* and Sergi Valverde1,2

1Complex Systems Lab, ICREA-UPF, Dr Aiguader 88,
08003 Barcelona, Spain

2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe,
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Modularity is known to be one of the most relevant
characteristics of biological systems and appears to be
present at multiple scales. Given its adaptive potential,
it is often assumed to be the target of selective
pressures. Under such interpretation, selection would
be actively favouring the formation of modular
structures, which would specialize in different func-
tions. Here we show that, within the context of cellular
networks, no such selection pressure is needed to obtain
modularity. Instead, the intrinsic dynamics of network
growth by duplication and diversification is able to
generate it for free and explain the statistical features
exhibited by small subgraphs. The implications for the
evolution and evolvability of both biological and
technological systems are discussed.
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1. INTRODUCTION

Biological and technological systems both exhibit a
common pattern of modular organization. A modular
system is formed by quasi-independent parts that not
only are tightly integrated within themselves but also
exhibit a certain degree of interdependency among
themselves (Schlosser & Wagner 2004). Modularity is
considered to be a prerequisite for the adaptation of
complex organisms and their evolvability (Raff 1996;
Gerhart & Kirschner 1997; Calabretta et al. 2000).

Modularity is particularly obvious in cellular net-
works (Ravasz et al. 2002), where it can be detected at
the topological level. These networks include the webs
of interactions among proteins, genes, enzymes and
metabolites or signalling molecules. It has been argued
that modularity is likely to have been selectively
favoured by evolution. In that case, explaining its
*Author and address for correspondence: Complex Systems Lab,
ICREA-UPF, Dr Aiguader 88, 08003 Barcelona, Spain
(ricard.sole@upf.edu).
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origins would require a functional view of biological
networks (Hartwell et al. 1999).

Within the context of network theory (Bornholdt &
Schuster 2003; Dorogovtsev & Mendes 2003; Boccaletti
et al. 2006; Koonin et al. 2006), the given system is
represented as a graph UZ(V, E) composed of a set of
N nodes (say proteins), VZ{vi}, and a set of links,
eij2E, indicating if a connection exists between nodes
vi and vj. An example is shown in figure 1: the human
protein interaction network. Here we can see a few
proteins having a large number of links (the hubs)
surrounded by many proteins having just a few
connections. This type of heterogeneous networks is
very common and is characterized by a probability
distribution P(k) of having a node with k links, which
falls off as a power law with a cut-off, i.e.

PðkÞwðkCk 0ÞKgeKk=kc ; ð1:1Þ

where k0 is a constant and 2!g!3 denotes the scaling
exponent (typically close to gw2.5). The cut-off kc is a
characteristic degree indicating the presence of a
maximum number of links. The hubs tend to have
important roles (Albert et al. 2000), particularly when
looking at regulatory elements such as transcription
factors (Rodriguez-Caso et al. 2005), where the most
connected nodes are often proto-oncogenes or tumour
suppressor genes and their failure typically involves
some proliferative disorder.

At its smallest scale, modules are defined by means
of subgraphs involving three or four elements (Wolf &
Arkin 2003). These subgraphs have received consider-
able attention in relation to the so-called network
motifs (Milo et al. 2002, 2004). Roughly speaking,
motifs are patterns of interconnections occurring in
complex networks at numbers that are significantly
higher than those in randomized networks. The
analysis of their statistical distribution reveals that
each class of natural and artificial networks seems to
display a common pattern of motif abundances. The
statistical pattern is thus interpreted as functionally
meaningful. Under this view, motif abundances—as
well as modularity—would be a consequence of
selective forces. Is that the case? Recently, a model
for the evolution of modularity and network motifs has
been suggested, based on a genetic programming
approach (Lipson et al. 2002; Kashtan & Alon 2005).
The model evolves electronic circuits under an environ-
ment that changes itself in a modular manner.However,
the view of network substructures as resulting from pure
selection or optimization has been questioned in a
number of studies (Guimerà et al. 2004; Solé et al.
2002a; Banzhaf & Kuo 2004; Mazurie et al. 2005; Rice
et al. 2005; Valverde & Solé 2005; Kuo et al. 2006; Solé &
Valverde 2006), suggesting that the abundance of motifs
does not necessarily reflect functional advantages.

In this paper we show that an alternative expla-
nation for modularity exists, associated with the
inevitable constraints imposed by the rules driving
the growth of cellular networks. Specifically, since
biological entities typically evolve by tinkering (Jacob
1976; Solé et al. 2002a), widely reusing, combining and
reconnecting available parts, some patterns of network
organization will be essentially inevitable. As a
consequence, both subgraph patterns and modular
doi:10.1098/rsif.2007.1108
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Figure 1. A modular network is illustrated by means of the
human proteome (data obtained from the DIP database:
http://dip-doe-mbi.ucla.edu). Nodes are proteins and links
indicate their physical (protein–protein) interaction. A
standard algorithm for identifying topological modules has
been used (see text), and it effectively detects several well-
defined groups of tightly related proteins. Modules are
indicated by different colours.
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features would be largely a by-product of the network
generative rules.
2. GROWING NETWORKS BY DUPLICATION

The approach taken here is inspired by a physics view of
biological complexity (Albert & Barabási 2002),
namely searching for generic mechanisms responsible
for global patterns. The question being addressed here
is how much of the modular organization of complex
networks might result from just the rules of network
growth by tinkering (Wagner 2003). The view here is
thus topological, with no direct link to functional traits.
In this context, we will restrict ourselves to a graph-
theoretical description of protein–protein interactions,
as previously followed by several authors (Wuchty
2001; Kim et al. 2002; Solé et al. 2002b; Pastor-Satorras
et al. 2003; Vazquez et al. 2003; Colizza et al. 2005; Goh
et al. 2005; Ispolatov et al. 2005; Foster et al. 2006).
These models involve some type of duplication–diver-
gence (DD) growth dynamics. This approach considers
single-gene duplication events as the leading
mechanism of genome growth (Ohno 1970). This is of
course an approximation to the real complexities
associated with genome growth dynamics. Although
single-gene duplication is considered to be the driving
force behind the evolution of complex organisms (Ohno
1970), several scales of duplication need to be
considered, including whole-genome duplications
(Maere et al. 2005).

After gene duplication has taken place, rapid diver-
gence occurs andmany redundant genes become silenced
(i.e. become pseudogenes). Changes in wiring are
associated with the emergence of novelty and new
J. R. Soc. Interface (2008)
functionalities (Patthy 1999). In our work presented
here we consider only such simple approximation based
on single-gene events.Wewill use one of the simplest DD
models of protein network evolution (Vazquez et al.
2003), which involves the following set of rules, to be
applied a given number of times, until N nodes are
present. Assuming that we have a graph of size n, we
iterate the following rules.

(i) Duplication. Choose a node vi2V at random and
duplicate it, thus generating a new node vnC1.

(ii) Link deletion. The new node shares a set of
neighbouring nodes {vj} with its predecessor.
For each common pair of common links, i.e. ei,j
and enC1,j, we choose one of them and delete it
with probability d. This rule thus removes
(probabilistically) redundant relations among
proteins.

(iii) Link addition. A link is added among nodes vi and
vnC1 with probability a. This is a small number
and allows new functionalities to emerge by
linking the twin proteins.

This model has been solved analytically and it has
been shown that it exhibits a phase transition at a given
deletion rate. This can be shown by constructing a
dynamical equation for the average degree Kn of the
simulated protein network after n nodes have been
introduced. It can be shown that Kn evolves following
the discrete system (Vazquez et al. 2003)

KnC1 Z
nKn C2aCð1K2dÞKn

nC1
; ð2:1Þ

where we can see that the number of proteins n is also
a time scale. Using the continuous approximation
KnC1KKnwdKn/dn and assuming that n is large, we
have a differential equation

dKn

dn
Z

2a

n
C

1K2d

n
Kn: ð2:2Þ

By solving it, we obtain the time evolution of the average
degree

Kn Z
2a

2dK1
C K1K

2a

2dK1

� �
n1K2d: ð2:3Þ

It is easy to check that a steady degreeK� is achieved for
dOdcZ1/2, namely

K� Z lim
n/N

Kn Z
2a

2dK1
; ð2:4Þ

whereas for d!dc, link removal is too slow and the
average connectivity is high. There is thus a critical
deletion rate dcZ1/2 separating a strongly connected
proteome from a sparse one (which would also include
many small subgraphs). Since real protein maps are
known to be rather sparse (with average connectivities
around hkiw3–5), we should expect to find appropriate
removal rates at values dOdc. Actually, it has been
shown (Vazquez et al. 2003) that for aZ0.1 and dZ0.7,
the model is consistent with several properties observed
in the yeast proteome (such as scale-free topology, small-
world behaviour, graph correlations and robustness
against node deletion). By using appropriate measures,
we will show that both modules and non-random
distributions of subgraphs are an expected by-product
of network growth by duplication.

http://dip-doe-mbi.ucla.edu
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Figure 2. Modularity in tinkered model networks. Here we show (a–d) the average number of modules (m) of networks generated
using the DD model. Here m is computed on the largest connected component for each d and averaged over 50 replicas. We used
four different a values ((a) aZ0.005, (b) aZ0.01, (c) aZ0.10 and (d) aZ0.50) and amaximal network sizeNZ1000. A well-defined
maximum is observed at d�z0.7 in all cases. The network shown in (e) is an example of the modular graphs obtained at d�.
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3. MODULARITY FROM TINKERING

3.1. Modules

We will first analyse the emergence of modular patterns
in the previously described model. In order to provide a
quantitativemeasure, wewill use a specific algorithm1 of
community detection (Clauset et al. 2004; see also
Newman 2006; Reichardt & Bornholdt 2006). The
method considers a decomposition of the graph U

(figure 2) into a set Gm of subgraphs Ci2Gm defining a
partition C. Obviously, many possible Cr-partitions are
possible. Using the adjacency matrix of the graph, AZ
(aij), and assuming a given partition, the fraction of
edges that fall within subsets of C will be given by

f ðCÞZ
P

i;j aijdðCi;CjÞP
i;j aij

; ð3:1Þ

where d(a, b)Z1 if aZb and zero otherwise. Using
mZ

P
ijaij=2, we can also write

f ðCÞZ 1

2m

X
i;j

aijdðCi;CjÞ: ð3:2Þ

In order to define an appropriate modularity index,
the previous measure needs to be compared with the
expectation from a randomly wired graph with identical
number of nodes and links. Let us indicate as ki the
degree of vi, which is obtained from the adjacencymatrix
as kiZ

P
jaij .

The expected probability of having a link connecting
two arbitrary nodes vi and vj will be simply kikj/2m, and
thus we can definedmodularityQ in terms of the average
difference between the observed and the expected value
of f, namely

QZ
1

2m

X
i;j

aijK
kikj
2m

� �
dðCi;CjÞ; ð3:3Þ
1All these approaches are heuristics. It has been shown that
modularity maximization is an NP-complete problem (Brandes
et al. 2006) and thus there is in general no optimal partition.
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which is properly normalized between 0 (random
network) and 1 (a single module is present).

The modularity of a network will be defined as the
maximum QZmaxfQg as evaluated by the search
algorithm (Clauset et al. 2004). The size of the best
partition m defines the (potential) number of modules.
Here we apply this measure to the largest connected
component of the network generated by the algorithm
described in §2. For each d, and a fixed a value, we
generate 50 simulated networks, each one starting from a
small graph of four fully connected elements and ending
once agraphwithNZ103nodes is obtained.Fourdifferent
values of a have been used. The results are shown in
figure 2, where a one-hump curve m(d) is obtained in all
four cases. A maximum is reached for d�z0.7, which is
actually the deletion rate that gave best-fit statistics
comparedwith yeast proteomedata (Vazquez et al. 2003).

The origins of the maximum can be understood in
terms of two basic conflicting components associated
with the growth rules. At low d values, the system is
highly connected, being all node members of the giant
component and having a large degree. As a consequence,
we should not expect to observe a large number of
modules. On the other hand, as d increases, the network
becomes more and more sparse and for dOdc, it starts to
get fragmented. The largest component in this domain
will be formed by highly heterogeneous groups of loosely
linked subgraphs. Close to the transition dc, many
elements belong to the largest connected component, but
the number of modules is not large since they share many
links.With increasing d, it is more likely to find groups of
connected nodes that still share few links. But further
increasing d implies breaking of U into many small
subgraphs, which will display a low modularity.
3.2. Subgraph census

Asecond level of analysis canbeperformedbyconsidering
the frequency of subgraphs of a given size, also known as
subgraph census (see Wasserman & Faust 1994

http://rsif.royalsocietypublishing.org/
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Figure 3. (a) Subgraph census for three different protein networks: human interactome (HI, filled triangles); yeast proteome (YP,
filled circles); and the subset of human transcription factors (HTF, open squares). The exponential fit for rR2 gives hHIZ1.81G
0.20, hYPZ1.79G0.21 and hHTFZ1.58G0.21. In (b), the corresponding graph census is shown from runs of the DD model,
averaged over 50 replicas. The exponent here is hDDZ1.71G0.20. The data for the protein networks were obtained from the DIP
database: http://dip-doe-mbi.ucla.edu and from Rodriguez-Caso et al. (2005). In (c), some examples of the transitions between
different subgraphs (using DD rules) are shown.
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and references therein). Here we have studied the census
of nZ4 subgraphs, since it provides a reasonable number
of different structures. More importantly, most examples
whose functional relevance has been described in detail
fall within this class (Milo et al. 2002, 2004; Klemm &
Bornholdt 2005; Valverde & Solé 2005).

The results are shown in figure 3a,b, where we can
compare the observed patterns of subgraph abundances
in real and simulated networks, respectively. For the real
datasets, we have used the human interactome, the
subset of transcription factors and the yeast proteome.
The plots display the per cent of subgraphs found in each
network against the subgraph rank r. After a plateau,
the frequency of subgraphs rapidly decays as an
exponential function, i.e.

NðrÞweKhr ; ð3:4Þ
with hz1.8. Such pattern is also found in the
distribution of subgraphs obtained from the DD model.
Using the d� value that gives the maximum number of
modules, we also obtain an exponential decay, with
hDDZ1.71G0.20, consistently with the real datasets.

The common pattern shared by both real and
simulated graphs is consistent with a rule-driven
mechanism of network evolution. In this context, it is
interesting to see that the different subgraphs are easily
connected through DD events (figure 3c).
4. DISCUSSION

What drives the emergence ofmodularity in evolution? Is
it a function-drivenmechanism or instead the by-product
of more fundamental, dynamical rules, as it has been
suggested in other contexts (Kauffman 1993)? Although
it is true that modularity is an essential feature of
biological structures, our analysis suggests that it might
be a by-product of the multiplicative nature of duplica-
tion–rewiring mechanisms. Such a tinkering process
(Jacob 1976; Solé et al. 2002a,b) inevitably leads to
fluctuations innetwork structure due to itsmultiplicative
J. R. Soc. Interface (2008)
nature: the rich gets richer and the graph will be
organized around hubs.Moreover, the local amplification
of subgraph abundances obtained from the DD process is
also responsible for the decay observed in N(r).

The presence of an optimal level of modularity at a
given d value is an important result of our study with
potential implications for evolution by selection, at least
at some levels. Selection might have been present at the
level of link deletion. By removing the right amount of
links, a large connected graph can be obtained, which
will be both heterogeneous (and thus robust against
random node deletion) and modular. In this context,
although our results do not rule out the role of selection
and functional adaptation in explaining modularity,
they suggest that strong constraints are imposed by the
rules of network growth. Thus, topological patterns
(including heterogeneity and modular organization)
would be an emergent property of evolutionary tinker-
ing. Evolvability might have strongly benefited from
such features, since heterogeneity and modularity
immediately favour robustness and specialization,
respectively. Further work should explore how these
results can be extended to a more detailed level of
description of network evolution.

We thank the members of the Complex Systems Lab for their
useful discussions. This work has been supported by a grant
MCyT FIS2004-05422, the European Union within the Sixth
Framework Programme under contracts FP6-001907 (DELIS),
the James S. McDonnell Foundation and Santa Fe Institute.
REFERENCES

Albert, R. & Barabási, A.-L. 2002 Statistical mechanics of
complex networks. Rev. Mod. Phys. 74, 47–97. (doi:10.
1103/RevModPhys.74.47)

Albert, R., Jeong, H. & Barabási, A.-L. 2000 Error and attack
tolerance of complex networks. Nature 406, 378–382.
(doi:10.1038/35019019)

http://dx.doi.org/doi:10.1103/RevModPhys.74.47
http://dx.doi.org/doi:10.1103/RevModPhys.74.47
http://dx.doi.org/doi:10.1038/35019019
http://dip-doe-mbi.ucla.edu
http://rsif.royalsocietypublishing.org/


Report. Modularity for free in complex networks R. V. Solé and S. Valverde 133
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Solé, R. V. & Valverde, S. 2006 Are network motifs the
spandrels of cellular complexity? Trends Ecol. Evol. 21,
419–422. (doi:10.1016/j.tree.2006.05.013)
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